头部右侧文字
头部左侧文字
当前位置:网站首页 > 网站动态 > 正文

小学趣味数学题(小学趣味数学题ppt)

admin admin ⋅ 2022-08-04 13:18:06

小学五年级20道趣味数学题还要有答案

9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

解: 7*18-6*19=126-114=12

6*19-5*20=114-100=14

去掉的两个数是12和14它们的乘积是12*14=168

10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

解:28×3+33×5-30×7=39。

11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

解:每20天去9次,9÷20×7=3.15(次)。

14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)

所以甲乙丙的平均数是(26+7)/3=11(份)

因此甲乙丙三数的平均数与甲数之比是11:7。

15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

74×6-70×5=94(个)。

16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

19. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

解:甲乙速度差为10/5=2

速度比为(4+2):4=6:4

所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

(1) A, B相距多少米?

(2)如果丙从A跑到B用24秒,那么甲的速度是多少?

解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度

25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程

10(a-b)=20(a-3b),

解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

(1)火车速度是甲的速度的几倍?

(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;

(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。

29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

解:甲需要(7*3-5)/2=8(天)

乙需要(6*7-2*5)/2=16(天)

30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页?

解:开始读了3/7 后来总共读了5/8

33/(5/8-3/7)=33/(11/56)=56*3=168页

32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?

解:甲做2小时的等于乙做6小时的,所以乙单独做需要

6*3+12=30(小时) 甲单独做需要10小时

因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?

解:甲和乙的工作时间比为4:5,所以工作效率比是5:4

工作量的比也5:4,把甲做的看作5份,乙做的看作4份

那么甲比乙多1份,就是20个。因此9份就是180个

所以这批零件共180个

34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着

解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5

所以乙挖4天能挖2/5

因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

35. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天?

解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。调来2人需100÷(2+2)=25(天)。

趣味数学题30道,要有趣的。急!急!急!

(1)某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%.原来要做多少玩具?(请写出计算过程)

解:

增加的部分就是原来的:3/5+10%

所以原来要做:280/(3/5+10%)=400件

(2)某校办工厂这个月生产本子的增值额为3万元.如果按增值额的17%交纳增值税,这个月应交纳增值税多少元?(请写出计算过程)

应该交:30000*17%=5100元

(3)爸爸这个月的工资是2100元,按规定工资在1600元以上的部分应缴纳所得税,如果按5%的税率缴纳个人收入调节税,爸爸这个月应交纳税多少元?他实际收入多少元?(请写出计算过程)

应该交:(2100-1600)*5%=25元

实际收入:2100-25=2075元

一、有关平行四边形、三角形、梯形面积计算的应用题

1、解放军战士开垦一块平行四边形的菜地。它的底为24米,高为16米。这块地的面积是多少?

s=ah 24*16=384

2、一块梯形小麦试验田,上底86米,下底134米,高60米,它的面积是多少平方米?

s=(a+b)*h/2 (86+134)*60/2=6600

3、一块三角形土地,底是358米,高是160米,这块土地的面积是多少平方米?

s=ah/2 358*160/2=28640

二、归总应用题

1、解放军运输连运送一批煤,如果每辆卡车装4.5吨,需要16辆车一次运完。如果每辆卡车装6吨,需要几辆车一次运完?

4.5*16/6=12

2、同学们摆花,每人摆9盆,需要36人;如果要18人去摆,每人要摆多少盆?

36*9/18=18

三、三步计算应用题

太阳沟小学举行数学知识竞赛。三年级有60人参加,四年级有45人参加,五年级参加的人数是四年级人数的2倍。三个年级一共有多少人参加比赛?

45*2+45+60=195

四、相遇应用题

1、张明和李红同时从两地出发,相对走来。张明每分走50米,李红每分走40米,经过12分两人相遇。两人相距多少米?

(50+40)*12=1080

2、甲乙两地相距255千米,两辆汽车同时从两地对开。甲车每小时48千米,乙车每小时行37千米,几小时后两车相遇?

255/(48+37)=3

五、列简易方程解应用题

1、向群文具厂每小时能生产250个文具盒。多少小时能生产10000个?

设:x小时能生产10000个

250x=10000

x=40

答:40小时能生产10000

六、有关长方体、正方体、表面积、体积(容积)计算的应用题

1、一个长方体的铁盒,长18厘米,宽15厘米,高12厘米。做这个铁盒的容积是多少?

18*15*12=3240

2、一个正方体棱长15厘米,它的体积是多少?

15*15*15=3375

1、填一填

(1)分母是12的最简真分数有( )个,他们的和是( )。

(2)一根铁丝长45 米,比另一根短14 米,两根铁丝共( )米。

(3)一根铁丝长45 米,另一根比它短17 米,另一根长( )米。

(4)异分母分数相加减,要先( ),化成( ),再加减。

(5)一批化肥,第一天运走它的13 ,第二天运走它的25 ,还剩这批化肥的( )没有运。

(6)把下面的分数和小数互化。

0.75=( ) 25 =( ) 3.42=( )

58 =( ) 2.12=( ) 414 =( )

2、计算题

512 +34 +112 710 -38 -18 415 +56

12 -(34 -38 ) 56 -(13 +310 ) 23 +56

3、解方程

17 +x=23 45 -x=14 x-16 =38

5、解决问题

(1)有一块布料,做上衣用去78 米,做裤子用去34 米,还剩112 米,这些布料一共用去多少米?

(2)某工程队修一条路,第一周修了49 千米,第二周修了29 千米,第三周修的比前两周的总和少16 千米,第三周修了多少?

(3)课堂上学生做实验用15 小时,老师讲解用310 小时,其余的时间学生独立做作业。已知每堂课是23 小时,学生做作业用了多少时间?

一填空题

1. 米表示把1米平均分成( )份,取其中的( )份。

2. 的分数单位是( ),它有( )个这样的分数单位。

3.( )个 是 , 里有( )个 。

4.在括号里填上适当的分数。

24千克=( )吨 4米20厘米=( )米

360米=( )千米 1小时=( )日

5. = = = =( )÷9=44÷( )

6.分数单位是 的最大真分数是( ),最小假分数是( ),最小的最简分数是( )。

7.把2米长的木料,平均分成7段,每段长 米,每段占全长的 。

8. + 表示( )个( )加上( )个( ),和是( )。

9. 、 、 、 这几个分数中能化成有限小数的是( )。

10.把下面各组分数从大到小排列。

、 、 ( )( )( )

、 、4.5 ( )( )( )

二、选择题:

1.下列各数中,不小于 的是( )。

A、1 B、 C、

2.把5千克盐放入20千克水中,盐的重量占盐水的( )。

A、 B、 C、

3.小于 的最简真分数有( )个。

A、3 B、4 C、无数

4. 和 这两个分数( )。

A、意义相同 B、大小相等 C、分数单位相同

5.甲的 等于乙的 ,那么甲( )乙。

A、大于 B、等于 C、小于

三、判断题。

1.3千克水的 和1千克水的 一样重。 ( )

2. 吨棉花= 吨铁。 ( )

3.1 是一个最简分数。 ( )

4.因为 比 小,所以 的分数单位比 的分数单位小。( )

5.真分数总是小于假分数。 ( )

6. 米比 大。 ( )

7.最简分数的分子与分母没有公因数。 ( )

四、口算。

+0.5 + 3.6+ +

2.4-1 +3.6 6.43- -0.375

五、计算下列各题。(能简算的尽量简算)

1+ - + - - -

2.15-( - ) 2.85+ +2.15+ 3.4-(0.25+ )

六、解方程。

+x=5.6 x- = x-(1.4+ )=1.8

七、列式计算。

1. 甲数是 ,比乙数多0.75,两数的和是多少?

2. 一个数减去3.25的差加上 ,结果是2.5,这个数是多少?

八、应用题。

1. 五三班有学生48人,其中男生21人。女生人数占全班人数的几分之几?男生人数是女生人数的几分之几?

2. 做同样的零件,小张12小时可做27个,小王6小时可做13个,小赵 8小时可做19个。谁做得最快?谁做得最慢?

3. 修一条1500米长的路,第一周完成了全工程的 ,第二周完成了全工程的 ,再修全工程的几分之几就完成了全部任务?

4. 王林看一本书,第一天看了全书的 ,第二天和第三天都比第一天多看全书的 ,三天后还剩全书的几分之几没看?

5. 有一个长方形,周长是68厘米,已知长是2 分米,宽是多少厘米?

回答者: 断翼天使ylq - 秀才 三级 1-18 10:07

干什么呀?????

回答者: 小朝夕 - 试用期 一级 1-20 13:12

分数、百分数应用题解题公式

单位“1”已知: 单位“1” × 对应分率 = 对应数量

求单位“1”或单位“1”未知: 对应数量 ÷ 对应分率 = 单位“1”

求一个数是另一个数的几分之几(或百分之几)公式:

一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(或百分之几)

求一个数比另一个数多几分之几(或百分之几)公式:

多的数量÷单位“1” = 一个数比另一个数多几分之几(或百分之几)

求一个数比另一个数少几分之几(或百分之几)公式:

少的数量÷单位“1” = 一个数比另一个数少几分之几(或百分之几)

(注意:这里的“多”、“少”还可以换成“增产”、“节约”等字。)

(注意:例题:(1)果园里有桃树120棵,梨树的棵数比桃树多20%,果园里有梨树多少棵?

(2)果园里有桃树120棵,比梨树的棵数少20%,果园里有梨树多少棵?

分析思路:先找出单位“1”,确定已知还是未知,单位“1” 知道就用乘法,单位“1”不知道就用除法。“比谁多(少)几分之几“列式就是“1+(-)几分之几”。)

列式:(1)120×(1+20%)

(2)120÷(1-20%)

打折、利润、利息、税收应用题的解题公式

含义:“八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%

公式:

现价 = 原价 × 折数(通常写成百分数形式)

利润 = 售价 - 成本

利息 = 本金 × 利率 × 时间

税后利息 = 本金×利率×时间×80%(注意:国债和教育储蓄不交税)

应纳税额 = 需要交税的钱 × 税率

圆的周长和面积的有关公式及关键语句

圆的周长和直径的比的比值叫做圆周率。 π = C ÷ d

已知直径求周长:C = πd 已知周长求直径:d = C ÷π

已知半径求周长:C = 2πr 已知周长求半径:r = C÷π÷2

已知半径求面积:S =πr

已知直径求面积:r = d÷2

S = πr

已知周长求面积:r = C÷π÷2

S = πr

半圆周长 = C ÷ 2 + d (注意:半圆周长 = 5.14r,适用于填空题)

半圆面积 = S ÷ 2

把一个圆平均分成若干份,拼成一个近似的长方形。(图见书本)

(1)拼成的长方形面积 = 圆的面积

(2)拼成的长方形的长 = 圆周长的一半 ( 长 = )

(3)拼成的长方形的宽 = 圆的半径 ( 宽 = r )

一、填空。(每空1分,共20分)

⑴、一个数由3个100、2个10、5个0.01组成,这个数写作( )。

⑵、7吨560千克=( )吨, 1 小时=( )分

⑶、把子80分解质因数,(180= )

⑷、 的分数单位是( ),它再加上( )个这样的分数单

位就得最小的质数。

⑸、2.7∶1 化成最简单的整数比是( ),比值是( )。

⑹、一个三角形至少有( )个锐角。

⑺、一个圆柱体钢铁可以铸成( )个等底等高的圆锥体。

⑻、5米布用去 米,剩下多少米?列式是( )。

⑼、圆是轴对称圆形,它的对称轴有( )条。

⑽、小学数学竞赛的获奖人数共30名,一、二、三等奖人数的比是

1∶2∶3,获三等奖的人数有( )名。

⑾、一个圆的周长是18.84厘米,这个圆的面积是( )。

⑿、在比例尺是1∶30000000的地图上,量得北京到广州的距离是6

厘米,北京到广州的实际距离大约是( )千米。

二、判断题。(正确的在括号内画“√”,错误的画“×”)(共8分)

⑴、16和24的最大公约数是它们最小公倍数的 。 ( )

⑵、循环小数0.5按四舍五入法保留两位小数约得0.55。 ( )

⑶、果园里栽了50棵树,有3棵没有成活,成活率是97%。 ( )

⑷、甲数比乙数少20%,乙数比甲数多25%。 ( )

⑸、正方体的六个面都是正方形。 ( )

⑹、3千克的 和1千克的 一样重。 ( )

⑺、路程一定,速度和时间成反比例。 ( )

⑻、三个连续自然数的和是m,那么最大的数是( +1)。 ( )

三、选择题。(把正确答案的序号填在括号里)(每题1分,共8分)

⑴、两个质数的积一定不是( )。

A、质数 B、合数 C、奇数 D、偶数

⑵、若 是假分数, 是真分数,那么( )。

A、X<5 B、X>5 C、X=5 D、X=6

⑶、小红晚上9∶40上火车,第二天上午8∶12下火车,她在火车上的时间是( )。

A、10小时32分 B、1小时28分 C、10点32分

⑷、三角形的面积一定,底和高( )。

A、成正比例 B、成反比例 C、不成比例

⑸、两个棱长都是4厘米的正方体,拼成一个长方体,这个长方体的表面积是( )平方厘米。

A、168 B、192 C、160

⑹、等腰三角形一个底角的度数是顶角度数的 ,顶角是( )。

A、1200 B、1350 A、300

⑺、要清楚地表示我校六年级各班人数的多少,绘制( )统计图最好。

A、条形 B、折线 C、扇形

⑻、甲数是135,( ),乙数是多少?,这道题缺一个条件,如果计算乙数的算

式是:135×(1+ ),请在括号里补上下面相应的条件。

A、乙数是甲的 B、甲数比乙数多 C、乙数比甲数多

四、计算题。(共34分)

1、直接写出得数。(6分)

0.125+ = 0.6-0.06= 4-3 =

× = 6 ÷3= 1÷ =

2、求下面X的值。(6分)

X-0.3×2.4=1.54 1 ∶3.5=

3、脱式计算。(12分)

72.56―18.74―21.26 3.7× +63×

1375-1702÷23 24÷1.6-0.8×0.9

4、列式计算。(6分)

⑴、24的25%减去3 的差去除4 ,商是多少?

⑵、比一个数的 少2.4的数是7.6,求这个数。

5、下图正方形的边长是3分米,求阴影部分的面积。(4分)

五、应用题。(每题5分,共30分)

1、张家界百货大楼降价20%出售一种毛衣,只卖96元钱,这种毛衣的原价是多少?

2、二家河乡计划在一片荒滩上植树1346棵,已经栽了7天,平均每天栽103棵。剩下的要5天栽完,平均每天要栽多少棵?

3、甲乙两城相距624千米,一列客车和一列货车同时从甲乙两地相对开出,客车每小时的平均速度是65千米,货车的平均速度是客车的 。两车开出以后几小时相遇?

4、小华读一本书,原计划每天读85页,12天可以读完,如果每天读102页,几天可以读完?(用比例解)

5、把一个体积为314立方厘米的铁块,熔铸成一个圆柱体。这个圆柱体底面直径是10厘米,高约是多少厘米?

6、某粮店本月卖出去原有大米的 以后,又运来720千克,这时所存的大米恰好是原有大米的80%,这个粮店原有大米多少千克?

题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?

题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?

题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?

题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?

题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?

题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?

题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?

题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?

.解:设有1元的x张,1角的(28-x)张

x+0.1(28-x)=5.5

0.9x=2.7

x=3

28-x=25

答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)

x+2(x-2)+5(52-2x)=116

x+2x-4+260-10x=116

7x=140

x=20

x-2=18

52-2x=12

答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张

7x+5x+3(400-2x)=1920

12x+1200-6x=1920

6x=720

x=120

400-2x=160

答:有3元的160张,7元、5元各120张。

4.解:货物总数:(3024-2520)÷2=252(箱)

设有大汽车x辆,小汽车(18-x)辆

18x+12(18-x)=252

18x+216-12x=252

6x=36

x=6

18-x=12

答:有大汽车6辆,小汽车12辆。

5.解:天数=112÷14=8天

设有x天是雨天

20(8-x)+12x=112

160-20x+12x=112

8x=48

x=6

答:有6天是雨天。

6.解:西瓜数:(290-250)÷0.05=800千克

设有大西瓜x千克

0.4x+0.3(800-x)=290

0.4x+240-0.3x=290

0.1x=50

x=500

答:有大西瓜500千克。

7.解:甲得分:(152+16)÷2=84分

乙:152-84=68分

设甲中x次

10x-6(10-x)=84

10x-60+6x=84

16x=144

x=9

设乙中y次

10y-6(10-y)=68

16y=128

y=8

答:甲中9次,乙8次。

8.解:设他答对x道题

5x-2(20-x)=86

5x-40+2x=86

7x=126

x=18

答:他答对了18题。

例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?

[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。

因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。

例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?

[分析] 一个10尺长的竹竿应有三种截法:

(1) 3尺两根和4尺一根,最省;

(2) 3尺三根,余一尺;

(3) 4尺两根,余2尺。

为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?

[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。

例4: 把25拆成若干个正整数的和,使它们的积最大。

[分析] 先从较小数形开始实验,发现其规律:

把6拆成3+3,其积为3×3=9最大;

把7拆成3+2+2,其积为3×2×2=12最大;

把8拆成3+3+2,其积为3×3×2=18最大;

把9拆成3+3+3,其积为3×3×3=27最大;……

这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。

例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?

[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。

如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。

例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?

[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服

(2100+60)-(900+1200)=60套

例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?

[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。

[解] 乙有必胜的策略。

由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。

[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;

(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。

例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?

[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

[练习]

1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)

2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?

3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?

4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时?

5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?

6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。问:是先写者还是后写者必胜?如何取胜?

[习题参考答案及思路分析]

1、∵1001=7×11×13,∴可以7×13为公约数,这样这十个正整数可以是 ,91×2,它们的最大公约数为91。

2、对于直角三角形而言,在直角边的和一定的情况下,等腰直角三角形的面积最大。若两直角边的和为8,则三角形的最大面积为 ×4×4=8。

3、为了使每个人排队和打水时间的总和最小,有两种方法:

(1)排队的人尽量少;(2)每次排队的时间尽量少。因此应先让打水快的人打水,才能保证开始排队人多的时候,每个人等待的时间要少,故共需5×1+4×2+3×3+2×4+5=35(分钟)。

4、由于甲、乙单独开放都不可能在10小时注满水池,因此必须有时间甲、乙全放。为了使它们合放的时间最少,应尽量开放甲管(速度快),这样甲开10小时注满水池的,余下 只能由乙注满,需。因此甲乙两管全放最少需要4小时。

5、此问题我们可以从最简单问题入手,寻找规律,从而解决复杂问题,最后集合地点应在中间地点。

6、先写者存在获胜的策略。甲第一步写6,乙仅可写4,5,7,8,9,10中的一个,把它们分成数对(4,5),(8,10),(7,9)。

谁有简单点的趣味数学题(小学适用)

1.

一千克棉花与一千克铁哪个重?(某一年的数学奥赛题)

2.

一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的不得分,小明得了23分,已知他未答的题目是偶数,他答错了几道?

3.一个数被3除余2,被5除余3,被7除余4,这个数是多少?

答案1.一样

2.一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的不得分,小明得了23分,已知他未答的题目是偶数,他答错了几道?

如果全部答对则可得:20*2=40分,现在他未答的是偶数,则总的分最多就应是:36、32。。。

答错一题比答对一题要少得:2+1=3分,现在他得了23分,比最多分少得了:17分或者13分、9分。。。

因为少得的分数要是3的倍数,所以可以得出少的分数是:9分

那么答错的题数就是:9/3=3题。

3.70*2+21*3+15*4=263。

263-105=158

158-105=53。

小学时,有一道趣味数学题:“稀奇稀奇真稀奇,四刀切成9块瓜,吃完剩下10块皮。”

按照井字形切就会有9块了。井字中间那块瓜,上下都有皮,因此多出一块皮,就是10块皮了。

西瓜按井字形分割,即横两刀、纵两刀,就可以分成九块,但井字形中间方形的那块在两端各有一块瓜皮,所以会剩下十块瓜皮。

定义

加法:把两个数合并成一个数的运算。

减法:在已知两个加数的和与其中的一个加数,求另一个加数的运算。

乘法:求两个数乘积的运算。

除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。

小学五年级趣味数学题及答案(30道)

《小学数学|五年级资料|四年级资料|数学暑秋入学测试卷》百度网盘资源免费下载

链接:

提取码:h3sa

小学数学|五年级资料|四年级资料|数学暑秋入学测试卷|暑期奥数教案|三年级资料|六年级资料|讲义堪错表|高分数学课程大纲|19暑假高分数学课程大纲(内部版).docx|19暑假高分数学课程大纲(对外版).docx|五年级数学讲义勘错表.docx|四年级数学讲义勘错表.docx|三年级数学讲义勘错表.docx|六年级数学讲义勘错表.docx  

初次见面,请填写下信息吧:

admin

admin

TA太懒了...暂时没有任何简介

精彩新闻